Effect of Scanning Speed on Material Efficiency of Laser Metal Deposited Ti6Al4V

نویسندگان

  • Esther T. Akinlabi
  • Rasheedat M. Mahamood
چکیده

The study of effect of laser scanning speed on material efficiency in Ti6Al4V application is very important because unspent powder is not reusable because of high temperature oxygen pick-up and contamination. This study carried out an extensive study on the effect of scanning speed on material efficiency by varying the speed between 0.01 to 0.1m/sec. The samples are wire brushed and cleaned with acetone after each deposition to remove un-melted particles from the surface of the deposit. The substrate is weighed before and after deposition. A formula was developed to calculate the material efficiency and the scanning speed was compared with the powder efficiency obtained. The results are presented and discussed. The study revealed that the optimum scanning speed exists for this study at 0.01m/sec, above and below which the powder efficiency will drop. Keywords—Additive Manufacturing, Laser Metal Deposition Process, Material efficiency, Processing Parameter, Titanium alloy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Laser Power and Powder Flow Rate on Properties of Laser Metal Deposited Ti6Al4V

Laser Metal Deposition (LMD) is an additive manufacturing process with capabilities that include: producing new part directly from 3 Dimensional Computer Aided Design (3D CAD) model, building new part on the existing old component and repairing an existing high valued component parts that would have been discarded in the past. With all these capabilities and its advantages over other additive m...

متن کامل

The Effect of Power and Maximum Cutting Speed on the Material Removal Rate and Cutting Volume Efficiency in CO2 Laser Cutting of Polycarbonate Sheets

In the laser cutting process some well-known parameters, e.g. laser power and cutting speed, play major roles in the performance of the process. Each parameter or a combination of parameters can affect the material removal volume and cutting volume efficiency. The purpose of this research is to study the effect of power and maximum cutting speed on the material removal rate (MRR) and cutting vo...

متن کامل

Numerical simulation of laser beam welding of Ti6Al4V sheet

This paper was aimed to report the 3D finite element analysis simulation of laser welding process of Ti6Al4V 1.7 mm sheets in butt joint in order to predict the temperature distribution, hardness, and weld geometry. The butt-joint welds were made using CO2 laser with the maximum power of 2.2 kW in the continuous wave mode. A part of the experimental work was carried out to verify the weld geome...

متن کامل

Effects of Laser Processing Parameters on Texturized Layer Development and Surface Features of Ti6Al4V Alloy Samples

Surface engineering is widely used in different areas, such as the aerospace industry or the biomechanical and medical fields. Specifically, laser surface modification techniques may obtain specific surface finishes for special applications. In texturing laser procedures, the control of processing parameters has a great influence on the geometry and characteristics of the treated area. When the...

متن کامل

Dry Sliding Wear Behavior of Ti6Al4V and TaN against TiN Deposited Steel Surface

The objective of this research is to study the dry sliding wear behaviour of metal surfaces and influences of their surface hardness. The improved hardness of the TiN deposited surface was about 1763 Hv. The worn surface Scanning Electron Microscope (SEM) morphology exhibits the surface damage due to varying wear test parameters. The Electron Dispersive Spectroscopy (EDS) reveals that the mater...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013